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by Gale Fair 
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SUMMARY 

The cluster approximation developed by P. R. Weiss to treat  the problem of the 
Heisenberg ferromagnet is used to calculate the ferromagnetic properties of a two-layer 
rectangular lattice, a simple cubic lattice, and a body-centered cubic lattice, for spin 
1/2 atoms. The two-layer rectangular lattice is considered as a model for a simple cu- 
bic ferromagnetic thin film, and the results a r e  compared with the properties of a com- 
plete simple cubic lattice. 
shows ferromagnetic behavior, with a Curie temperature about two-thirds that of the sim- 
ple cubic lattice. The magnetization, internal field, energy, specific heat, and paramag- 
netic susceptibility a r e  calculated and compared for the three lattices. One feature that 
appears in this calculation for the two-layer lattice, as previously obtained for the sim- 
ple cubic case, is the occurrence of an "anti-Curie" temperature; a second, lower, 
temperature at which the spontaneous magnetization vanishes. 

The results obtained indicate that such a two-layer lattice 

INTRODUCTION 

The existence of ferromagnetism for some metals (e. g., iron, nickel, cobalt, and 
some of their alloys) is a phenomenon for which no completely adequate theoretical ex- 
planation has yet been given. The actual interaction mechanism that gives r i se  to ferro- 
magnetism is not fully understood. In practice a Hamiltonian is assumed for a model of 
this interaction, such as the Heisenberg Hamiltonian, which will be used in this work. 
Once the Hamiltonian is specified, however, the problem is not finished. For example, 
in the case of the Heisenberg model, the Hamiltonian eigenvalue problem cannot be 
solved exactly for a crystal. To determine the thermodynamic properties of a system 
from this  model, several techniques have been developed for making approximate calcu- 
lations. 



One of these approximation methods is the method of spin waves first introduced by 
Bloch (ref. 1). The original Bloch theory predicts the existence of a Curie temperature 
for a three-dimensional lattice but finds no such Curie temperature for a planar, two- 
dimensional lattice. This method has also been applied to the case of thin ferromagnetic 
films (refs. 2 and 3), to determine the effect of film thickness upon the spontaneous mag- 
netization for films in which the thickness of the lattice is quite small in comparison with 
the planar dimensions. The results of spin-wave theory applied to finite lattices (refs. 2 
and 3) indicate that such systems, at sufficiently low temperatures, show ferromagnetic 
behavior, even to the limit of lattices that are only one atomic layer in thickness. 

The primary motivation of the present analysis was to determine whether these re- 
sults of spin-wave theory were obtainable with other methods of dealing with ferromag- 
netic phenomena. The method selected was the Bethe-Peierls-Weiss approximation (or 
BPW method), which is basically a high-temperature approximation for treating the 
Heisenberg Hamiltonian. This method is applied herein to a new model for a ferromag- 
netic thin film. This thin-film model consists of two plane quadratic (square) lattices 
parallel in space with the distance between the planes equal to the interatomic distance 
within each lattice. This means that each atom will have five nearest neighbors. 

made than was available of the properties of other simple lattices. This permits com- 
parison of the results for the thin-film model, not only with the low temperature spin- 
wave calculations, but also with the properties of bulk samples treated with the BPW 
method . 

review briefly the more elementary Ising model, with its approximate methods of solu- 
tion, as well as the Heisenberg model. 

In addition to the analysis of this thin-film model, a more complete investigation is 

To clarify the nature and source of the BPW method to be used, it is necessary to 

k i n g  Model 

The Ising model represents a method devised by Ising (ref. 4) (and subsequently de- 
veloped further), to treat a class of cooperative phenomena. This model has been used 
in the theory of ferromagnetism, the "lattice gas, '' order-disorder in binary alloys, and 
other problems involving interactions between atoms situated upon lattice sites. It is as- 
sumed that there is an interaction energy between a lattice atom and each of its nearest 
neighbors in the lattice. For example, in ferromagnetism this energy is to depend upon 
the relative orientation of the spins of the atoms; for order-disorder it depends upon 
whether the neighboring atoms are like or unlike species; and so forth. The problem is 
to use statistical mechanical techniques to calculate the thermodynamic properties of the 
system from a knowledge of its total energy. 
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As a model for ferromagnetism, the Ising model is too highly idealized to predict 
quantitative results for a real  ferromagnet. At most, this model may be used as a guide 
for some of the qualitative aspects of a ferromagnetic system. In this vein, Onsager 
(ref. 5) has given a rigorous calculation for the two-dimensional Ising system and finds 
that such a lattice has a Curie temperature. 

The total energy for the Ising model is determined by the Hamiltonian for the system. 
This Ising Hamiltonian has the following form: 

XIS= -2 cSiSj - B Si 
Dj i 

The first summation represents a double sum, one over all spins Si, and the second over 
all the nearest neighbors to Si, denoted by S., where Si represents, for ferromagne- 
tism, the value of the scalar spin of the atom that is on the ith lattice site, and E is the 
interaction energy between Si and S.. The second. term represents the interaction be- 
tween the spin system and an external magnetic field proportional to B. 

terest  here was developed by Bethe (ref. 6) for the solution of the order-disorder prob- 
lem in binary alloys. It was later shown by Peierls (ref. 7) that this method also could 
be extended to the treatment of ferromagnetism. Basically, this approximation consists 
of treating rigorously the interaction of a single atom with its nearest neighbors. The 
remainder of the system is then replaced by an equivalent internal field that interacts 
only with this first shell of nearest neighbor atoms. This problem can be solved exactly 
and the thermodynamic properties determined from the corresponding partition function, 
which includes the internal field. Since there must be no difference between the proper- 
t ies of the atom chosen as central and those for an atom in the first shell, a self- 
consistency condition is used to eliminate the internal field. In practice, this is done by 
requiring that the average magnetic moment of the central atom in terms of the external 
field and the average magnetic moment of an atom in the first shell in terms of the inter- 
nal field be calculated and set equal. This calculation explicitly determines the internal 
field. 

more shell of atoms is included in the rigorous calculation, the remainder still being re- 
placed by the internal field. This procedure is extremely difficult beyond the first step, 
how ever. 

developed for the Ising model (as described previously), to the Heisenberg exchange 
Hamiltonian . 

J 

J 

Among the approximate methods used to solve this problem, the one of particular in- 

This procedure may be extended to a ser ies  of approximations. At each step one 

The method used in this report is an extension of the Bethe-Peierls approximation 
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Heisenberg or Exchange Interaction Model 

The Heisenberg model (ref. 8) for ferromagnetism was developed as a consequence 
of the exchange interaction of quantum mechanics. This exchange interaction between a 
pair of spins arises from the requirements of the Pauli exclusion principle and the 
Coulomb interaction and may be thought of as a result of the overlapping of the wave func- 
tions describing the atoms. 

of spins that occupy lattice sites is given by 
Similar in form to the Ising Hamiltonian, the Heisenberg Hamiltonian for a system 

XH = -2 JSi* Sj - B 2 Siz 
i> j i 

plus an unimportant constant term involving only J. The summation is over nearest 
neighbor pairs, J is the exchange interaction coupling constant, and Siz is the z- 
component of the ith spin. The vector spins here are to be treated as quantum- 
mechanical operators. 

Among the methods used to treat  equation (2) is an extension due to P. R. Weiss 
(ref. 9) of the Bethe-Peierls approximation for the Ising model. This method (referred 
to as the Bethe-Peierls-Weiss approximation, or simply the BPW method) is the one 
used herein. 
but it is basically the Bethe-Peierls method applied to the exchange interaction. One 
atom is chosen as the central atom, and its interaction with the first shell of nearest 
neighbor atoms is calculated exactly; the rest of the system is replaced by an internal 
field that acts only upon this first shell. The corresponding energy eigenvalue problem 
can be solved and the resulting energy levels used to calculate the partition function for 
the system. From this partition function and the self-consistency condition on the aver- 
age magnetic moments of the atoms, the ferromagnetic properties for the lattice may be 
determined. 

The details of the calculation will be given in the next section of this report, 

THEORY 

Energy Levels and Partit ion Function 

The cluster Hamiltonian for the BPW approximation is obtained from the Heisenberg 
exchange Hamiltonian (eq. (2)), which is for the entire crystal, by the procedure sketched 
in the introduction. The exchange interaction between the spin of the chosen central atom 
So and the resultant spin of the first shell of nearest neighbors is extracted from the 
- 
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exchange term in equation (2). The remaining interactions of the first-shell atoms with 
their nearest neighbors and with the applied magnetic field are then written as an inter- 
action with an effective internal field B1. The external applied field Eo defines the 
z-axis of the system. In this approximation the internal field El, as described before, 
is assumed to be in the same direction. Aside from the exchange interactions, the spin 
of the central atom interacts only with the externally applied field, and only the first 
shell of atoms interacts with the internal field. With these conditions, the Hamiltonian 
for a cluster in which there are no interactions between atoms within the first shell has 
the following form: 

where 

J exchange integral 

Soz z-component of spin of central atom 

z-component of resultant spin of first shell 

Bo magnitude of external field 

magnitude of internal field B1 
g Lande spin factor 

P Bohr magneton 

For convenience in notation, gPBo will be replaced by Ho and gPB, by HI. 
The eigenvalues of so - s1 may be calculated from the vector model of angular mo- 

mentum as follows: 

s = so + si 

Therefore, 

s.s=so.so+sl .  s 1 + 2 s o . s 1  

thus, 

Now define the quantity E, as the expectation value of the exchange interaction, as 
follows: 
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1 1 Thus E, will have the values E 
Then, from equation (4) 

and E+ for S = S1 - 2 and S = S1 +z, respectively. 

E = J(S1 + 1) S =  Si - -  :I 
E+ = -JS1 S = S 1 + l  J 

2 

when the spin per atom is 1/2, the only case considered here. 

S 
dependent terms in equation (3), 

The representation used is one in which the exchange energy is diagonal. Since 
+ Slz = Sz = m, the z-component of the total spin, by rearrangement of the field- 02 

In this representation, the energy levels when m = *(SI ++) are 

W = -J% F -  1 (2S1H1 + Ho) 
2 

When ( m  I 5 (i$ - f>, the matrix for the Hamiltonian is (see appendix) 

where 
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For convenience, the following definitions a r e  made: 

The determinantal equation for the eigenvalues then becomes 

1/2 
E- - mH1 - ax - X 1. (1 - 4a2) x 

2 

E+ - mH1 + a x  - X 
1 /2 - (1 - 4 2 )  x 

2 

= o  

The resulting quadratic equation for Xk, the eigenvalues, may be solved exactly and 
yields 

[1 + 5x(4a + txa V2 E+ + E- E+ - E- 
Xk = - mH1 * 

2 2 
(9) 

where 

1 -  1 5 '  - -  
E+ - E J(251 + 1) 

The term Ex is proportional to the ratio (H1 - Ho)/J. Ultimately Ho will be set  equal 
to zero; in the neighborhood of the Curie point, the internal field H1 is small, so that 
the square root may be expanded in terms of the ratio ex. After expanding to fourth 
order and rearranging terms, the energy levels a r e  

where 

% , 2  = 

bl = b2 = -m 
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m 
2s1 + 1 c1,2 = 

r 1 

r 1 

m 
e1,2 = * 

2J2(2E$ + 1)3 

r 1 
1 24m2 + 

f1 ,2  = 
16J3(2S1 + 1)3 (2S1 + 1)2 (2% + 1)4 

Terms to fourth order in the field strengths are kept for the specific heat calculation 
although only the second-order terms a r e  needed in explicit form for the determination 
of the Curie temperature. 

then takes on the following form: 
The partition function Z for the cluster, written in terms of the energy levels Wk, 

c - 

The first summation is over the value of the total spin of the first shell % from % = 0 
to % = n, where 2n is the number of nearest neighbor atoms within the first shell. The 
summation indicated by m- is over m from m = -(% - $) to m = +(E$ - i), and the 

sum is from m = -(SI +i) to m = +(% + i). The factor w(2n, S1) represents the 
degeneracy of each S1 level. This is essentially the number of ways that the first shell 
of atoms may have a total spin of S1. To calculate this factor, let L(2n, SI) stand for 
the number of ways of placing 2n spins, n + 
tice sites, giving a z-component of the total spin equal to %, with the total spin of % 
or greater. Then 

m+ 

up and n - % down, upon the 2n lat- 

(2n) ! 
(n + %)!(n - %)? 

L(2n, %, = 
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The corresponding factor for the arrangement of n + % + 1 up spins and n - 5 - 1 
down spins upon the 2n sites, resulting in a total spin of E$ + 1 or  greater, is 
L(2n, S1 + 1) 

(2n)! 
(n + S1 + l)!(n - S1 - l)! 

L(2n, S1 + 1) = ~ 

The difference between these two factors is just the number of arrangements upon the 2n 
sites that give a total spin exactly equal to S1, with a z-component also equal to  S1. 
Thus 

w(2n, S1) = L(2n, S1) - L(2n, S1 + 1) 

- - (2n)! - (2n)! 
(n + S1)! (n - S1)! (n + S1 + l)! (n - S1 - l)! 

Self- Consistency Condit ion and Cur ie  Temper at u r e  

The expression for the partition function (eq. (11)) still contains the internal field 
explicitly. To eliminate this from the calculation, the consistency condition must be ap- 
plied to the system; that is, the central atom must be identical to any atom in the first 
shell. Explicitly, this means that the average magnetic moment of the central atom must 
be equal to the average magnetic moment of an atom in the first shell. 
atom does not interact with the internal field, the average magnetic moment Go is given 
by 

Since the central 

a In Z a In Z mo = d T  -- = gpdT ___ 
- 

aBO aHO 
(15) 

The average magndtic moment of a first-shell atom, which is determined by only the 
internal field, is given py 1/2n times the average magnetic moment of the entire first 
shell and is 

Thus, for the consistency condition, Go and El must be equal 
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a In Z - a In Z 2n--- 
aHO aH1 

The solution of this equation for the internal field can be obtained for the case of a 
vanishing external field. Thus, after the derivatives of the partition function are taken, 
Ho is set equal to zero. In evaluating equation (17) odd functions of m must vanish, 
since the sums are taken over an interval symmetric about m = 0. Equation (17) gives 
the following equation determining the internal field explicitly: 

which for nonvanishing H1 yields 

(19) 
A + C H 1 = O  2 

The quantities A and C are defined as 

2 n  , 

with 

(1 + 2n)C: = z Z [ ( l  + 2n)$ + (2 + 3n)%ek + 2(1 + 2n)%ek 
m 
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To evaluate these summations the following identities are used: 

2 1 = 2 T + 1  
m=-T 

T 

T I 
m4 = T(T + 1)(2T + 1)(3T2 + 3T - 1) 

15 
m=-T 

It is important to note that in deriving equation (19) one factor of H1 has been can- 
celled from each side. This implies that H1 = 0 is always a solution to the consistency 
condition. This result is analogous to the Bethe-Peierls solution for the Ising problem, 
which also gives such a trivial solution. For a system for which there exists a nonzero 
Curie temperature, this solution will not be of interest. Physically, this zero solution 
corresponds to no long range order in the system. 

The quantities A and C in equation (18), the consistency condition, a r e  functions 
of the temperature, or, more precisely, functions of the ratio x = J /hT .  Thus, H1 is 
determined as a function of x or T. The Curie temperature Tc is specified by the 
vanishing of the internal field, or, equivalently, by the vanishing of the quantity A in 
equation (19). 
and solving for x. This equation has the general form 

Explicitly this means evaluating A, setting the expression equal to zero, 

n 
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Equation (23) contains the parameter n, which specifies the type of lattice under con- 
sideration. Thus equation (23) determines the Curie temperature for any lattice that has 
no interactions among the first-shell atoms. For the different values of n correspond- 
ing to the lattices of interest here, the implicit equations for xc = J/bTc a re  as follows: 

(1) For the linear chain 2n = 2, equation (23) becomes 

and the only real, nonnegative solution is xc = 0. Since this is a solution that is not pos- 
sible physically (infinite temperature), the only possible solution of equation (18) for this 
system is H1 = 0. 

(2) For the quadratic lattice 2n = 4, equation (23) becomes 

- 72 e2x - 5(8x - l)ex + (32x - 5)e-2X + 72 (x - :)e-3x = 0 (2 5) 
25 5 

Again the only nonnegative, real solution is xc = 0, making the only physically possible 
solution of equation (18) H1 = 0. 
temperature in agreement with the Bloch spin-wave theory. 

form: 

Thus, for this two-dimensional lattice there is no Curie 

(3) Similarly, for the simple cubic lattice 2n = 6, equation (23) has the following 

One acceptable solution to this equation is 
(4) For the model for a two-layer thin 

the equation for xc is 

- 5 ~ ( e X - A e - ~ ~  7 2 

xc = 0. 540 or  +bTc = 1.850 J. 
film, a lattice with five nearest neighbors, 

The solution of equation (27) is xc = 0.783, corresponding to a Curie temperature given 
by kTc = 1.278 J. 
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(5) The explicit form of equation (23) for the body-centered cubic lattice (2n = 8) is 
quite complicated, but the numerical solution gives the Curie temperature of 
ATc = 2.908 J. 

The one- and two-dimensional lattices show no ferromagnetic behavior, that is, no Curie 
temperature. The three-dimensional space lattices have solutions for the Curie temper- 
atures, while the five-nearest-neighbor lattice structure, constructed as an intermediate 
model, also has a Curie temperature, which falls below that for the simple cubic lattice. 

The previous results show a qualitative agreement with the Bloch spin-wave theory. 

Ant i -Cur ie  Temperature 

In addition to the Curie temperature solutions for the consistency condition as dis- 
cussed previously, there also appears a second set  of solutions to equation (23) for those 
lattices for which there exists a nonzero solution for x. These second solutions, which 
occur at lower temperatures than Tc, have been termed anti-Curie points by P. W. 
Anderson (ref. lo), who first noticed their existence. 
is no real  solution to equation (23), the question does not arise. The simple cubic lattice 
2n = 6 has such an anti-Curie point with the value kTAC = 0.269 J as found by 
Anderson. For the two-layer model 2n = 5 and for the body-centered cubic 2n = 8, the 
second solutions occur at hTAC = 0.339 J and kTAC = 0.212 J, respectively. 

ing of the magnetization of the system below TAC is clearly in disagreement with the 
physical behavior of a ferromagnetic system. 

in powers of (H1 - Ho)/J. 
to be valid can be obtained by evaluating the internal field, obtained from equation (19), 
as a function of temperature. 
cubic 2n = 8, there is a singularity in the internal field; the factor C in equation (19) 
vanishes. Numerical evaluation shows that this singularity occurs very near the Curie 
temperature, at a temperature of about 90 percent of the Curie temperature. For the 
two-layer lattice the factor C does not vanish, but it becomes small enough that the in- 
ternal field becomes very large, also quite near the Curie temperature. The appearance 
of the anti-Curie point cannot be taken too seriously since in all cases it occurs outside 
what must be considered as the region of validity of the energy eigenvalue expansion. 

Figures 1 and 2 show the calculated dimensionless internal field and magnetization 
mo very near the critical temperature for the three lattices under consideration. All 
curves show the extremely rapid decrease to zero at the transition temperature, which 
is character istic of ferromagnetic transitions. 

For the lattices for which there 

The existence of a second zero of the internal field, and correspondingly, the vanish- 

The source of this difficulty can be traced to the expansion of the energy eigenvalues 
The region of temperature for which this expansion is expected 

For the simple cubic lattice and also for the body-centered 

- 
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Figure 1. - Internal field as function of reduced temperature. 
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Figure 2. - Magnetization as function of reduced temperature. 
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Energy and Specific Heat 

Since the specific heat of the system is the temperature derivative of the energy, the 
starting point for this calculation is the specification of the energy per atom of the system 
as a function of the temperature. The exchange term in equation (3) represents the inter- 
action between a central atom and its shell of first nearest neighbor atoms. In a system 
with N atoms there are 2 N such interactions. The energy of the entire system may be 
written as 2 N times the ensemble average of the exchange energy 

1 
1 

E = - 1 N(-2J{S0 - jl)) 
2 

where the angular brackets indicate ensemble averages and Ho = 0. Now, since 
2s0. S1 = S(S + 1) - S1(S1 + 1) - So(So + 1) with So, S1, and S defined as before and 
since So = 1/2, then 

2(S0 * S1) = S(S + 1) - S1(S1 + 1) - - ( 4 "> 
Thus, taking the ensemble average of the exchange term 

where 

results in the energy of the system having the form 

k m  s1 

with all symbols as defined previously. 

Curie temperature may be expanded and the energy per atom L? may be obtained 
As with the discussion following equation (19), the summand in the region near the 

1 5  



k m  s1 

or 

k m  
s1 

For convenience in computation the energy may be rewritten in terms of four new 
functions of the temperature to second order in H1 as 

J 2 P 0  2 

where Z has been rewritten as 

2 Z = Po + P2Hl 

and Po7 P17 PZ7 and P3 are defined as 
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k m  s1 

k m  s1 

A further solution requires an explicit evaluation of these functions for the specific lattice 
of interest, that is, 2n = 5, 6, or 8. 

In addition to the temperature dependence, the energy equation (eq. (30)) contains the 
internal field explicitly. This may be eliminated by use of the self-consistency condition 
(eq. (19)) giving 

2 A  
H 1 = - C  

From these results the energy per atom has been calculated numerically as a function of 
the reduced temperature as displayed in figure 3 for the two-layer lattice, the simple 
cubic lattice, and the body-centered cubic lattice, very near the Curie temperature. It 
is evident, both from the expression for the energy (eq. (30)) and from the curves, that 
the energy is a continuous function of the reduced temperature but with a discontinuity in 

TnC 
.95 .96 .97 .98 .99 1.00 1.01 1.02 1.03 1.04 1.05 

Figure 3. - Energy a s  function of reduced temperature. 
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slope at the transition temperature. 
Since the specific heat of the system is simply the temperature derivative of the en- 

ergy, there is a finite discontinuity in the specific heat at the Curie temperature, as 
displayed in figure 4. The specific heat discontinuity implies that this system undergoes 
a second-order phase transition, according to the Ehrenfest definition, at the Curie tem- 
perature. The order parameter in the system is the internal field, just as in the original 
Weiss molecular field formulation. The values of the discontinuities a r e  0. 912, 1.211, 
and 1.488 for the two-layered lattice, the simple cubic lattice, and the body-centered 
cubic lattice, respectively . 

Par am ag net i c  S u scept i bi I ity 

As is readily seen from the graph of the spontaneous magnetization for temperatures 
above the Curie temperature, the internal field vanishes in the absence of an applied 
field. When there is an applied field present, the situation is not the same. The applied 
field interacting with the spins produces an internal field and a resulting magnetization. 
This is experimentally verified by the observation that above the Curie temperature there 
is a paramagnetic susceptibility which obeys a modified Curie-Weiss law of the form 

18 



where C is a constant, the Curie constant, and 8 is called the paramagnetic Curie tem- 
perature. Typically, 8 is found to be a few percent larger than Tc, the ferromagnetic 
Curie temperature. 

ing with the partition function given by equation ( l l ) ,  but keeping a nonzero applied field. 
For an expansion very near the Curie temperature only te rms  that are second order in 
the field strengths need be kept. Just as before, the average magnetic moment of the 
central atom in the cluster and the average magnetic moment of an atom in the first shell 
of nearest neighbors may be calculated from equations (15) and (16). The self-consistency 
condition requires that these be equal, giving now an equation between the applied field 
Ho and the internal field H1 

The paramagnetic susceptibility may be calculated from the BPW formalism by start- 

AH + BHO = 0 (36) 

where H is the resultant internal field, H = H1 - Ho, A is given by equation (20), and 
B has the form 

k-1 S1=O m 

(37) 

In the calculation of the susceptibility, it is more convenient to work with the average 
magnetic moment of the entire cluster m 

- -  - 
1 m = m  +2nm 0 

from which the magnetization Go is 

after the self- consistency condition has been applied. 
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The susceptibility then is the ratio of the magnetization Go to the applied magnetic field 
Bo (or HO/g/3). Thus from equations (39) and (38) 

1 + 2 n  

s1 

- A ~ / ~ T  
e (40) 

The applied field Ho and the internal field H enter only as a ratio, and this may be 
eliminated by use of the consistency equation (36). Equation (40) may be written as 

tbT 
g2p2 = 1 + 2n 932 

k 

For a comparison with the Curie-Weiss law (eq. (35)), it is more convenient to cal- 
culate the reciprocal of the susceptibility. This curve then should be linear with an in- 
tercept on the T-axis that is equal to the paramagnetic Curie temperature 8. If equa- 
tion (41) is rewritten to correspond with this discussion, 

where xo and xH are the corresponding summations in equation (41). Results have 
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Figure 5. - Reciprocal of paramagnetic susceptibility as function of reduced temperature. 

been calculated for 2n = 5, 6,  and 8, and a r e  plotted in figures 5(a), (b), and (c), re-  
spectively. 

of the reciprocal susceptibility occurs when the factor A vanishes. 
already been found to define the ferromagnetic Curie temperature. 
defined as the rigorous paramagnetic Curie temperature coincides with the ferromagnetic 
Curie temperature, at least in the cases considered here with the BPW approximation. 
Figure 5 shows, however, that another paramagnetic Curie temperature can be defined 
by extrapolating the linear portion of the curves down to the axis. The resulting values 
for the Curie temperature obtained by this scheme a r e  1.36,  1.26, and 1.12 times the 
ferromagnetic Curie temperature for the two-layer lattice, the simple cubic lattice, and 
the body-centered cubic lattice, respectively. These extrapolated numbers do not have 
much significance due to the remaining nonlinearity in the curves for large T/Tc (as 
seen in fig. 5). 

A numerical investigation of the various terms in equation (42) shows that the zero 
But this point has 

Thus, what could be 

DISCUSS ION 

To fulfill the original purpose for this study, it is appropriate at this point to  make 
a comparison with the spin-wave results of Bloch (ref. l ) ,  which predict a ferromagnetic 
Curie temperature for three-dimensional lattices, but none for two-dimensional systems. 
The results of the calculations presented here, applicable only to infinite lattices, seem 
to essentially agree with the results of Bloch. The linear chain and plane quadratic lat- 
tices show no ferromagnetic behavior, while the three-dimensional lattices with five, six, 
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and eight nearest neighbors have solutions for the Curie temperature. The Curie temper- 
ature for the two-layer thin-film model occurs at approximately two-thirds the value of 
the Curie temperature for a simple cubic lattice, both calculated with the BPW approxi- 
mation. 

The correspondence between the results of the two methods is not as complete as it 
first appears. The requirement for a lattice to have ferromagnetic properties as a result 
of the BPW method is of a more topological nature than the corresponding criterion for 
the Bloch theory. According to the BPW method, if there are no interactions between the 
first-shell atoms, any lattice that has a coordination number (number of nearest neigh- 
bors) of more than four has a Curie temperature. A calculation by Weiss (ref. 9), shows 
that lattices with interactions between the atoms in the first shell must have a coordina- 
tion number greater than or equal to eight (e. g . ,  a modified body-centered cubic) to pos- 
sess  ferromagnetic behavior. 

A s  a point of contrast between the Bloch and BPW methods consider the two-layer 
model under consideration in this report, that is, a coordination number of five. It has 
been shown that such a lattice has a Curie temperature, as indicated by the nonzero solu- 
tion to equation (27). Although this represents a three-dimensional lattice, it is of inter- 
est to consider an imaginary two-dimensional lattice having the same coordination num- 
ber. The fact that such a lattice does not satisfy the symmetry requirements for a two- 
dimensional Bravais lattice is not important in this discussion. If such a plane lattice 
with coordination number five could be constructed, it would have a Curie temperature 
identical to that calculated for the two-layer lattice, that is, it would also satisfy equa- 
tion (27). 

lattice to be ferromagnetic on the BPW approximation may be stated in a concise form: 
For a lattice of a particular class (i. e . ,  presence or absence of interactions among the 
first-shell atoms) to possess ferromagnetic properties it is necessary and sufficient that 
the lattice coordination number be equal to or greater than some minimum value (e. g., 
2n 2 5 for noninteracting lattices). 

One point for comparison of the BPW approximation with a real ferromagnetic sys- 

From this example and the discussion earlier, it appears that the requirement for a 

tem ar ises  from equation (30). From this equation it is seen that the energy per atom of 
such a system is a continuous function of the temperature with a finite jump discontinuity 
in the slope at the Curie temperature. There is some evidence, on the other hand, to in- 
dicate that there should actually be a logarithmic singularity in the slope (for a discussion 
see Hill (ref. 11)). As  yet, however, the experiments have not been precise enough to 
settle definitely the question of the nature of the singularity at the ferromagnetic Curie 
point. 

tion with the ??constant-coupling?? approximation of P. W. Kastelijn (ref. 12). This 
It is of interest to compare the results of this calculation using the BPW approxima- 
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method assumes that the Heisenberg Hamiltonian for the entire system may be written in 
terms of effective scalar two-body interaction Hamiltonians. 
the energy of the system may be calculated by means of standard thermodynamic tech- 
niques. 

The interest in this method arises from the fact that for a cluster that contains no 
interactions between first-shell atoms, the BPW method represents, in a sense, a sys- 
tem of two-body interactions, just as in the Kastelijn approximation. This correspon- 
dence is not complete, since the BPW method includes long-range correlations inherent 
in the assumption about the internal field, not included in the constant-coupling method. 
For the two-layer lattice, however, first-shell interactions are absent, and the constant- 
coupling method gives a useful cross-check for the calculations done previously. 

tinuity in the specific heat AC are 

From these two-body terms 

The expressions derived by Kastelijn for the Curie temperature Tc and the discon- 

-1 b ~ ,  = ~ ( 1 ,  A) 
2n - 4 

3 4n 2 (2n - 4)2 2n )2b 
AC=-  

32 (2n - 1)(2n - 2) 2n - 4 

where 2n represents the number of nearest neighbors for the lattice, as used before. 
Evaluating these quantities for 2n = 5 results in 

J T = 1.243- 
h C 

AC = 0. 506 1.y 

which compare fairly well with our value of 1.278 - 
with the specific heat discontinuity (0.912 b)  obtained from the BPW approximation. 

constant-coupling approximations. 
for ferromagnetic behavior to exist is the same in each method. 
constant-coupling approximation there is no second solution corresponding to the anti- 
Curie point as appears in the BPW calculations. 

for the Curie temperature, but not i 
There are two points to be noted in making a comparison between the BPW and the 

First, the condition that the lattice must have 2n 2 5 
Secondly, in the 

CONCLUDING REMARKS 

Within the limitations of the Bethe-Peierls-Weiss approximation the two-layer lattice 
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model for a thin film shows behavior that is qualitatively consistent with the results of 
spin-wave theory and also with the properties of noninteracting bulk lattices as calculated 
by the BPW method. The Curie temperature is consistent with that calculated for the 
simple cubic and body-centered cubic, and the second-order nature of the phase transi- 
tion appears as a finite jump discontinuity in the specific heat. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 1, 1965. 
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APPENDIX - CLUSTER HAMILTONIAN 

This appendix deals with the problem of calculating the matrix elements of the 
Hamiltonian (eq. (3)) in a representation in which the exchange energy is diagonal. The 
discussion essentially follows that of Condon and Shortley (ref. 13). The Hamiltonian 
may be written in te rms  of Ho and H1 as discussed in the text 

X = -2JSo * SI - HOSOz - HISlz (All 

where the vector sum of so and i1 is defined by 

- s = so + s, 
and 

sz = soz + slz (A2b) 

Then, by means of equations (4) and (A2b) X may be rewritten in a more useful form 

X = -J(s2 - 3; - $21) - SzHl + Soz(H1 - H d  

The re resentation that diagonalizes the exchange interaction is the representation 
in which S , Sz, sg, and 5; are diagonal. The eigenvalues of the exchange energy a r e  
given by equation (6) and the eigenvalues of Sz are just the values of m. All that re- 
mains is to determine the matrix elements of So, in this representation. 

"'class T??  operators. These operators are defined by their commutation relations with 
any angular momentum operator j. These relations a r e  

4 

To accomplish this, consider the properties of a class of operators known as 

[Jx, Txl = 0 [J , T ] = -iT, [J,, T,] = iTy 7 Y X  

[J T ] = O  [J,, TYl = iT, Y' Y I [J,, TY] = -iTx 

[J,, Tz] = -iTy [Jy, TzJ = iTx [J,, T,l = 0 J 
and 

- -  
[J, T1 - T2] = 0 (A51 
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where square brackets symbolize commutator brackets and fi = 1. Any vector operator 
that transforms in the same manner as the position vector under a proper coordinate ro- 
tation is a class T operator. In particular, an angular momentum operator, such as 
So, belongs to this class of operators. 

component of a vector operator ?;. 

- 

To calculate the matrix elements of Soz, plan on taking the matrix elements of one 
For this purpose, consider 

- -  - -  -2  - [J ,TI =J. [J, TI - [T, J]. J 

which follow from the commutation relations. Now consider the following commutator: 

[J -2 , [J - 2 -  ,TI] = - 2 i [ J 2 , j  X T - iT] 
- 2 -  - -2  -_ 

= -2i[J , J X  TI - 2[J , TI 

-2-2 -2 = 2(J  T + T J  ) - 4 5 0  T) 
-2 - 2 -  But there is also another expression for [J , [J , TI] 

-2-2 - 4  [22, p2,T]] = S4T - 2 5  T J  + T J  

Therefor e, 

From this identity the matrix elements of can be calculated since 5 is a Her- 
For example, from the left side of equation (A6), for the matrix ele- mitian operator. 

ments between the states { jm 1 and 1 j rmf)  , as 

-2--2 --4 -4-- -2--2 ( jm1z4T-  25 T J  + T J  Ijrmr) = ( jmIJ  T [ j r m r )  - 2(jmlJ TJ Ijrmr) 

since a system of units is used in which ti = 1. Similarly for the-right side of equation 
W), 
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But the right side of equation (A8) may be rewritten as 

- -  
(jm I j r rmtc)  ( j r rmr?  1 J a T 1 j ?mr) c -- - 

( jmlJ (J .  T)ljrmr) = 

- -  
But J - T is diagonal with respect to j and my which follows from equation (A5); thus 

Thus, 

This is the expression determining the matrix elements of !f', and in particular, those 
of Tz. 

Looking only for the expression when j = j r  gives 
Note in equation (A9) that, if j r  = j f 1, the square bracket on the left side vanishes. 

Since Jz is diagonal in my it follows for the z-component that 

This expression determines the diagonal elements of Soz in this representation. 

sion must be derived that is valid when j r  = j f 1. To do this, consider the ladder oper- 
ators T+ and T 

Since equation (A9) is indeterminate for the off-diagonal elements, another expres- 

defined on the set of class T operators 

T- T + = T x + i T y  = T, - iT 1 Y 
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I I 1  11.1111111II I, . . 1 1 1 1 1 1 1  I,. . I S .  .... .......... . .  

Similar ladder operators may be defined for the 2 operators, as 

J- J+ = = Jx Jx + - iJy iJyl 
To express T, in te rms  of these operators, consider the following commutator: 

[J+, T-] = [J, + iJy, Tx - iTy] 

= [J-, T-1 + 2i[Jy, T-1 

or, from equation (A4), 

1 
2 

T, = - [J,, T-1 

Thus, from this expression and a knowledge of the matrix elements of the ladder oper- 
ators the matrix elements of Tz may be calculated. For example, 

The ladder operators act only upon the m values and have nonzero matrix elements only 
between two states whose m-values differ by unity. 

Consider each case in equation (A15) separately (see refs. 13 to 15) 
(1) For j r  = j - 1 

- ( jmlT-I j  - l , m  + l ) ( j  - 1,m + 11J+lj - 1,m) 

= ( j iT i j  - 1)d(j - m -I. l ) ( j  - m)d( j  + m)(j - m + 1) 
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? 

where the quantities ( j  !Ti j - 1) and (jiTi j + 1) a r e  in the notation of Condon and 
Shortley (ref. 13) and need to be defined. Starting with the commutation relation for J- 
and T-, that is, [J - -  , T ] = 0, and calculating the matrix elements that satisfy the selec- 
tion rules on m result in 

for j r  - j = 0, *l. 
But the matrix elements of the J operator a re  well-known and yield 

Thus 

This relation between these ratios is independent of m. 

( j iTIj  + 1) 
This equality evaluated for j f  = j f 1 is used to define the terms (j!TI j - 1) and 

These elements are related to the set of irreducible elements of a class T operator. 
The evaluation of these will be reserved until later. 
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Equations ( A l l ) ,  (A16), and (A17) determine the matrix elements of So, explicitly, 
once a change of notation is made. Before this is done, it would be useful to consider the 
general form of the operator So,. This matrix will have 2 (S1 + i) + 1 = 2(S1 + 1) rows 
and columns. The only nonzero elements will lie upon the principal diagonal and along 
the diagonals one step removed from the principal diagonal. This follows from the fact 
that the only nonzero matrix elements for T are for j T  - j = &l. Each row or column is 
indexed by a value of S1, or, equivalently by m. Calculating the matrix elements of 
So, as given in the text results in effectively picking out a square 2 by 2 matrix with 
j = SI +z, SI - 2 and for a given value of m. Thus to calculate the matrix elements 
from equation (Al l ) ,  (A16), and (A17), the association is made that the j-values for the 
two states a re  S1 + 2 and S1 - Z, associating with T, the operator Soz, which is a 
class T operator. 

J -c S. Consider j1 = i - so; then 

1 1 

1 1 

- -  
First, for the diagonal elements of Soz, ( jm I J - TI jm) is needed for ;I; -c io and - -  

- 2  s l=s  - 2  + s 0 - 2 S o ~ S  - 2  

- so. - s = -  1(-2  s + s o  - 2 - 4  
2 

and then, 

and 

(sl - 1 - , m l s o -  - -  ~ ~ i s ~  - -,m) 1 
= - a (sl - i) 2 2 

Thus, 

m - - 
2s1  + 1 
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t1 - ~ , m ~ s o z ~ s l  -- ,m)= 1 ~ m - y s l  2 -;) 
2 (sl -;)(s1+;) 

m - - -  
2s1 + 1 

For the off-diagonal matrix elements the irreducible terms appearing in equations 
(A16) and (A17) must be evaluated. When so is the operator T involved, the evaluation 
of these terms may be derived, but the calculation is prohibitively long to be shown here. 
The details are given in Condon and Shortley (ref. 13, chapter 3); the results are merely 
quoted her e 

(S - so + S1)(S + so - S1)(S + so + s1 + 1)(S0 + s1 + 1 - 

4S2(2S - 1)(2S + 1) 

1 
2 

for S = S1 +-  and 

Ill2 

(S + 1 - so + S1)(S + 1 + so - S1)(S0 + s1 - @ ( S o  + s1 + s + 2) 

{4(s + g2[4(S + 1)2 - ilj 
(sl - ;:s0:s1 +; = '> [ 

1 
2 

for S = S1 - -. 

Evaluating these gives 

and 

Substitutin 
are 

(sl -; :sois, + ;) = 1 
2s1 + 1 

(A241 

these results into equations (A16) and (A17), L e  matrix elements of Soz 
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Thus, from equations (A21), (A22), and (A25), the matrix form of one of the 2 by 2 
block matrices of Soz is 

m 
2s1 + 1 

I (2S1 4m2 + q2 r2 1 -  

Accordingly, the matrix of the Hamiltonian is 

1 
2 
- 1 -  

(2S1 4m2 + 1)2 I 
m 

2s1 + 1 

x =  

1/2 7 
J(S1 + 1) - mH - m (H1 - Ho) L k  - 4m2 2] (H1 - Ho) 

2s1 + 1 (2S1 + 1) 

as given in the text. These a r e  the results given by Weiss  (ref. 9). 
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